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Abstract
The effects of Mie resonance on the photonic band-gap structure of two-
dimensional photonic crystals are investigated in detail. Firstly, we demonstrate
the correlation between the band-gap structure and Mie resonance, such as the
midgap frequency and the changes in gap width with different cylinder radii.
We find that the midgap frequency and the gap width increase linearly and
then saturate, before and after the Mie resonance frequency crosses the midgap
frequency. The radius value at the crossing point between the midgap frequency
and the Mie resonance frequency becomes smaller with the increase in the
refractive contrast. For large radius, all the Mie resonance frequencies fall into
the corresponding bands. Secondly, the changes in the gap width are studied
with increasing index of the cylinders. Changing rules of the gap width are
found depending on the position of the Mie resonance frequency. For example,
when the Mie resonance falls inside the gap the gap width increases most rapidly
and reaches its maximum value when the Mie resonance is leaving the gap
range (around the lower edge of the gap). After that the gap width decreases
very steeply with increase in the refractive contrast. Thirdly, we investigate the
effect of Mie resonance on the band width for the ‘heavy-photon band’, which is
the third band of our system. We find that, quite different from other bands, the
band widths of such bands are determined by the overlapping integral of the Mie
resonance states. All these results can be explained by the Mie resonance based
on two physical pictures, i.e. the scattering picture and the hopping picture.
According to these analyses and results, we may understand more clearly how
the Mie resonances influence the formation of the band-gap structure. The Mie
resonance effects on photonic band-gap structure presented in this paper would
be valuable in designing various kinds of photonic crystals.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Photonic crystals (PCs) have attracted much attention recently since their rich dispersion
relations enable one to control light with amazing facility and produce effects which are
impossible with conventional optics. In order to fully utilize these dispersion properties of
PCs we need to understand the origin of the photonic band-gap (PBG) structure. It is well
known that besides the Bragg multiple scattering, there is also a second mechanism called Mie
resonance [1, 2], that contributes to the formation of the spectral gaps. Mie resonance is the
scattering excitation of a single scatterer. For higher dielectric contrast, it was suggested that
Mie resonances of an isolated scatterer correspond to pseudogaps or flat bands in the band
structure [3–5] and in PCs they play the same role as the atomic orbitals in the electronic
case [6–8].

The discussion of effects induced by Mie resonances in PCs was initiated by John [9].
In a very early study, of three-dimensional system (e.g. an fcc lattice) John supposed ‘a large
photonic band gap arises when the density of dielectric spheres is chosen such that the Mie
scattering resonance occurs at the same wavelength as the macroscopic Bragg resonance of the
array’. Based on this idea, he found the optimum volume filling fraction f = 1/(2n) (where
n is the refractive index) for the one-dimensional case. And Datta [10] concluded that for the
scalar case there was indeed a strong correlation between the resonance frequencies of a single
scatterer and the frequencies at which gaps appear. However, there are some differing opinions
about the Mie resonance effect on the widening of the gap [11]. So the relation between the
Mie resonance and the band-gap structure still needs more detailed investigation.

In this paper we make further investigation of effects induced by Mie resonance in PCs. We
choose the 2D case and confine our attention to the TM mode. The advantage of a 2D system
is that TM and TE modes are separate, which simplifies the nature of the eigenmodes and
corresponding computation and makes it easier to understand the physical origin of the band-
gap structure. Moreover, 2D PCs are more easily fabricated than 3D ones, so the study of the
2D case is meaningful for applications. Finally, the 2D case should be more interesting, since
the 2D scattering effect is stronger than 3D but weaker than 1D. And the detailed quantitative
investigation of effects induced by Mie resonance in PCs for the 2D case are left open from
previous studies [9–11]. In this paper we examine the effects induced by Mie resonance on
the band-gap structure of 2D PCs and give further qualitative and quantitative study of the
correlation between Mie resonance and the formation of the photonic band gap. We find that
with increasing radii the Mie resonance frequency and gap width increase almost linearly, then
the midgap frequency crosses the Mie resonance frequency, finally becoming saturated. For
a large radius, the Mie resonance frequency falls in the band. The gap can be enlarged when
Mie resonance falls near the low edge of a gap. The width of the third band dominated by Mie
resonance corresponds to the overlapping integral. We explain these behaviours from the field
distribution in PCs.

This paper is constructed as follows. In section 2 we compare Mie resonance frequencies
of a single cylinder with the band-gap structure to look for any correlation between them. The
effect of Mie resonance on the gap width is the subject of section 3. Section 4 is devoted to
the effect of Mie resonance on the band width. A conclusion is finally drawn in section 5. In
addition, the selection of the second gap is discussed in the appendix.

2. The correlation between Mie resonances and gaps

In this section, we will compare the 2D band-gap structure with the Mie resonance frequencies
of a single cylinder to find the correlation between them. There are two well-known physical
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(a) cross section (b) the first Brillouin zone

Figure 1. (a) Cross section of 2D periodic dielectric cylinders of radius r and lattice constant a,
r/a = 0.2. The refractive index of the cylinders is n. The origin of coordinates is chosen at the
centre of one of the cylinders. (b) The first Brillouin zone (BZ) of the square 2D PC. �, X and M is
the high-symmetry points in the first BZ.

pictures of the effects of Mie resonance on photonic band-gap structures. The first one is the
‘scattering picture’ in which the back-scattering of a single scatterer (through Mie resonance)
is important for the generation of a photonic gap. In this picture the Mie resonances act as
an obstacle to the propagation of light in PCs. The second picture is the ‘hopping picture’ in
which the photons can hop from one cylinder to another with the overlap of the Mie resonant
states. In this picture, the Mie resonance can help the wave to propagate through the PC. So for
a band-gap structure in a certain frequency range, the main effect of Mie resonance should be
discussed more carefully.

We adopt the structure shown in figure 1(a). Infinitely long dielectric cylinders are arranged
in a vacuum to form a square lattice in the xy plane. The radius of cylinders and the lattice
constant are denoted by r and a, respectively. The refractive index of cylinders is denoted by n
and that one of the vacuum is n0 = 1. The first Brillouin zone is plotted in figure 1(b). Only the
E-polarized states and the several lower bands in the �X direction are discussed. The band-gap
structure is calculated by the plane-wave method. We compare the first two Mie resonance
frequencies and the low band-gap structure to look for the correlation between them. Our
definition of ‘the second gap’ is quite different from the common sense one, which is defined
as the energy range between the second band and fifth band. For detailed arguments about the
definition please see the appendix.

To find the general rules of the band-gap structure from the Mie resonance, we plot
Mie resonance frequencies (black squares) and the midgap frequencies (red dots) versus the
ratio r/a for different refractive contrasts in figure 2. Figures 2(a)–(f) are respectively for
n = 1.1, 1.7, 2.6, 3.6, 4.5 and 10. The frequency is presented in units of ωr/2πc, where ω is
the angular frequency. In this unit the Mie resonance frequencies are independent of r (only
depend on the refractive index n), then the Mie resonance frequencies versus the radius are
straight lines as shown in figure 2.

From figures 2(b)–(e), in which the refractive indices are in the normal value and range
from 1.7 to 4.5, we can find some universality. (i) When the first (second) midgap frequency
has not crossed the first (second) Mie resonance frequency, the midgap frequency and the
gap width increase almost linearly with the increase in the cylinder radius. When the first
(second) midgap frequency has crossed the first (second) Mie resonance frequency the increase
in the midgap frequency obviously becomes slow and finally saturated. (ii) The radius value
at the cross point of the first (second) midgap frequency and the first (second) Mie resonance
frequency becomes smaller when the refractive index n becomes larger. (iii) When the radius
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Figure 2. Mie resonance frequencies (black squares) and midgap frequencies (red dots) versus the
ratio r/a. They cross at A and B. The frequency is presented as ωr/2πc. (a) The refractive index
n = 1.1, the first three Mie resonance frequencies and the first two midgap frequencies. (b) As (a)
except n = 1.7. (c) As (a) except n = 3.6. (d) As (a) except n = 3.6. (e) As (a) except n = 10.
(f) As (a) except n = 10.

of the cylinder is large (>0.4), for all refractive indices, the first (second) Mie resonance falls at
the first (second) band. From these evident general behaviours we find that in the normal index
range there is an apparent correlation between the Mie resonance and the band-gap structure.

We will give a qualitative explanation of the correlation between the Mie scattering and the
band-gap structure from detailed analysis of the field propagation in the different conditions.
The field distributions of Bloch waves can reveal some basic pictures for us especially for
the midgap states. We note at here that the ‘Bloch states’ are generally defined at the band
frequency range, but this concept can be broadened into the gap frequency range, when the
modes are evanescent and the wavevector is complex [14]. In figures 3(a) and (b) by using the
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(a) r/a=0.1 (b) r/a=0.3 (c) r/a=0.4

Figure 3. (a) The field distributions of the Bloch state of midgap frequency with ωa/2πc = 0.4505
for r/a = 0.1 (n = 3) simulated by FDTD. The exponential decay factor is cancelled. (b) As (a)
except ωa/2πc = 0.2841 for r/a = 0.3. (c) The field distribution of the mode at the second band
for kx = 0.25, n = 3 and r/a = 0.4 simulated by the plane wave method. The black circles denote
the cylinders.

finite-domain time-dependent (FDTD) method we calculate the field distributions of the Bloch
state of midgap frequency and plot them for n = 3 with ωa/2πc = 0.4505 for r/a = 0.1 and
ωa/2πc = 0.2841 for r/a = 0.3, respectively. In the FDTD simulation, the plane wave with
the midgap frequency from a line source is normally incident to the PC from the left. But since
the frequency is inside the gap, the field should decay exponentially. In figures 3(a) and (b),
the exponential decay factor is cancelled by hand to show the field distribution more clearly.
For comparison, the field distribution of the Bloch state at the second band for Kx = 0.25 in a
n = 3 and r/a = 0.4 system is obtained by the plane-wave method and plotted in figure 3(c).
In these figures, the black circles denote the cylinders. In figure 3(a), the ‘scattering picture’
can be observed that the light is scattered off the propagation direction by cylinders. On the
other hand, the ‘hopping picture’ is shown in figure 3(c) where the field is more concentrated in
the dielectric region and the light can hop from one cylinder to another through the overlap of
the Mie resonance states. In figure 3(b), we show the middle stage from the scattering picture
to the hopping picture. We can see that the field is scattered similarly to figure 3(a). But the
fields of different cylinders starts to overlap with each other, which is much more obvious in
figure 3(c).

For the behaviour (i), when the radius is small, the field distribution shown in figure 3(a)
is a typical example. From the field distribution of figure 3(a), the isolated cylinders scatter
the propagating wave and so we adopt a scattering picture. In this case, the mechanism of
the band-gap is dominated by the Bragg scattering effect, which is determined by the ‘in
phase’ constructive interference of the back-scattered fractional waves from different scatters.
Therefore, the gap position is mainly determined by the ‘in phase’ condition of back-scattered
fractional waves, such as 2naveaωgap−centre/c = 2π , where nave = √

f ε + (1 − f )ε0 (ε and ε0

are respectively the dielectric of the cylinder and the vacuum) is the average index in the PC and
f is the filling ratio. The normalized midgap frequency fgap−centre = ωgap−centre/(2πc/r) =
(2πc/2navea)r/2πc = r/2navea is proportional to the radius of dielectric cylinder and nave � 1
due to the small radius. This explains why the gap-centre frequency increases linearly with the
increase of cylinder radius. However, the scattering strength (or cross-section) of individual
cylinders is proportional to the radius of the cylinder, so that the gap width is proportional to
the radius of the cylinders too. Now the Mie resonant frequency is a little distance from the
gap central frequency, so that we cannot see the Mie resonance field distribution in figure 3(a).
And since the Bragg condition is wavelength matching with the lattice spacing (a) while the
Mie condition is wavelength matching with the cylinders of diameter (2r ) and 2r < a, the
Bragg condition always falls below the first Mie resonance; thus the gap opens below the Mie
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resonance. But when the radius of the cylinder is larger, the Mie resonance effect become more
and more obvious. We find that the increase in midgap frequency can be saturated, especially
after the gap-central frequency crosses the Mie resonant frequency (actually the gap width
is also saturated, as will be discussed in section 3). This phenomenon can be explained by
field distribution shown in figure 3(b). After the midgap frequency crosses the Mie resonance
frequency, the field becomes more concentrated inside the cylinder. Then the effect of the
increase in the radius becomes weaker in the change of the effective refractive index neff

(related with the field distribution), and therefore the midgap frequency becomes saturated.
Here neff = √

fe ∗ ε + (1 − fe) ∗ ε0, where fe = ∫
Vε

E∗(r)D(r) d3r/
∫

E∗(r)D(r) d3r is
related to the field distribution [13]. The filling ratio fe measures the fraction of electrical
energy located inside the cylinders and is applicable to all bands.

For the behaviour (ii), when the radius is small the band-gap mechanism is dominated by
the Bragg scattering effect and the midgap frequency ( fgap−centre = ωgap−centrer/2πc) increases
linearly with the increase in cylinder radius for all refractive indices. Due to the small radius
the scattering strength is weak and neff � 1 for all refractive indices. But the normalized Mie
resonance frequencies fMr = ωMrr/2πc decrease with the increase of the refractive index (in
this unit it is independent of r ). Then when the refractive index increases the lines denoting the
midgap frequencies almost not change while the normalized Mie resonance frequencies fMr go
down. Therefore, the radius becomes smaller at the crossing point of the midgap frequency
and the Mie resonance frequency. This is an important value for judging the saturation of the
midgap frequency.

For the behaviour (iii), as the radius of the cylinder is very large (r > 0.4a) the field such
as displayed in figure 3(c) is more concentrated in the dielectric region, and the propagation
of waves is taking place by hopping from cylinder to cylinder through the overlap of the local
resonance states. Now it is not surprising to find that the Mie resonance frequencies fall in
bands for all dielectric constants. It is well-known that from the tight-binding model of atomic
lattices the electronic band can be thought as the broadening of the single atomic states. This
picture generally does not work for EM waves, since the Mie resonance is much weaker than
the atomic bounded states. But the hopping picture which is widely used in the tight-binging
model still can be used when the radius of the cylinders is large enough. This point agrees with
Datta’s [10] conclusion for the scalar case and is similar to the conclusion of the acoustic and
elastic wave [15].

Now we discuss the two extreme cases. For the case of n = 1.1, the scattering of the single
cylinder is so weak for all radii that the Bragg scattering dominates the band-gap structure.
Therefore, in figure 2(a) the first (second) midgap frequency has not crossed the first (second)
Mie resonance frequency and always increases with increasing radius. For the case of n = 10
in figure 2(f), the field concentrates its energy inside the cylinder more easily. So when the
radius is small (r/a = 0.1) the first (second) midgap frequency crosses the first (second) Mie
resonance frequency and falls into the first (second) band. The case of figure 2(f) is more like
the tight-binding model of electronic systems [6].

3. The effects on the gap width by Mie resonance

In this section, different from previous discussion, we examine the correlation between the Mie
resonance and the photonic gap width with fixed radius but changing refractive index.

With the refractive index increasing linearly, the first (second) gap width (�ω/2π ) versus
the normalized deviation of the Mie resonance from the gap centre ((ωgc − ωMr)/�ωg) for the
first and second gaps is plotted in figure 4. Between the two vertical lines there is the range
where Mie resonance falls inside the gap. Figures 4(a)–(c) are the cases for the first gap with
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(a) r/a = 0.2, 1st gap width (b) r/a = 0.3, 1st gap width

(c) r/a = 0.4, 1st gap width (d) r/a = 0.2, 2nd gap width

(e) r/a = 0.3, 2nd gap width (f) r/a = 0.4, 2nd gap width

Figure 4. The gap width versus the place where the Mie resonance is located in the gap. A vertical
line is plotted when Mie resonance falls at the edge of the gap. (a) The first gap for r/a = 0.2,
(b) the first gap for r/a = 0.3, (c) the first gap for r/a = 0.4, (d) the second gap for r/a = 0.2,
(e) the second gap for r/a = 0.3, (f) the second gap for r/a = 0.4.

r/a = 0.2, r/a = 0.3 and r/a = 0.4, respectively. And the other figures are the cases for the
second gap with same radii.

From figure 4, it is evident that for a fixed radius, when the index is small, the Mie
resonance frequency ωMr is outside the gap (much larger than ωgc) and the gap width is small.
But with increasing index, ωMr gradually moves into the gap range from the upper gap edge,
and at the same time the gap width increases rapidly. When the Mie resonance frequency ωMr

gets into the gap, the gap width shows its most rapid increase in the whole process. But with

7



J. Phys.: Condens. Matter 19 (2007) 176214 L Shi et al

(a) n = 1.6 (b) n = 2.6

Figure 5. The field distributions of the Bloch state of midgap frequency with ωa/2πc = 0.435 85
for n = 1.6 and r/a = 0.3 by FDTD. The exponential decay factor is cancelled. (b) As (a) except
ωa/2πc = 0.3123 for n = 2.6.

the index becoming larger, around the range where the ωMr pass the lower gap edge, we can
find the gap width gets to its maximum value. After that the gap width decreases very steeply
with increasing index.

We can understand the behaviours in figure 4 from the scattering effect of the Mie
resonance plotted in figure 5. When the refractive index is low (the difference in index between
the cylinder and vacuum is small), as we discussed before, the scattering picture still works. The
band-gap structure is dominated by the Bragg scattering. With increasing refractive index the
scattering cross-section becomes larger and the gap width increases rapidly. The phenomenon
of the gap width increasing most quickly as the ωMr gets into the gap from upper gap edge can
be explained by the Mie resonance too. Obviously, in this case, the scattering effect of Mie
resonance is strongest and mostly contributes to the photonic gap. Actually, this is exactly the
condition that Sajeev John supposed where the Bragg scattering and the Mie resonance both
mostly contribute to the gap generation. From the figures there is obviously a maximum gap
width for a certain radius and the maximum value generally appears when the Mie resonance
passes the lower gap edge. After the maximum gap-width point, the Mie resonance falls into
the band frequency range and the gap width decreases sharply. This is reasonable since when
the Mie resonance frequency falls into the band the scattering effect of Mie resonance should
be much weaker and the hopping picture becomes dominating.

For our discussion, we can see that the gap width which is an important value for the
design of the PC is closely related with the Mie resonance. This not only reveals the deep
relation between the band-gap structure and the Mie resonance, but also helps us to optimize
the design of the PC for a large gap.

4. The effects on the ‘heavy-photon’ band width by Mie resonance

As we have discussed, the hopping picture based on the Mie resonance can help us to
understand the corresponding relation between the photonic band and Mie resonance. For the
2D photonic crystal which we have studied in previous sections there is a special band, the third
band, which is called the ‘heavy-photon’ band [4, 5] in other studies. Under certain conditions,
the third band of the 2D photonic structure shows an extraordinary property: the band width is
very small. Or in other words, it is a very flat band which means that the group velocity of the
band modes is very small (so that it is called the ‘heavy-photon’ band). We will see that this
property is closely related to Mie resonance.

In this section we will discuss the effects of Mie resonance on the band width in detail. We
plot the first three band widths versus the refractive index for different radii (r = 0.2a–0.45a) in

8
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(a) the first band width (b) the second band width

(c) the third band width (d) the overlapping integral

Figure 6. (a) The first band widths (�ω/2π ) versus the refractive index for different radius. (b) The
second band width. (c) The third band width. (d) The overlapping integral (arbitrary unit) versus
the refractive index for different radius.

figures 6(a)–(c) respectively. Figures 6(a)–(c) show that the band widths of all bands decrease
with increasing refractive index. But more detailed observation of figure 6(c), which is of
the third band, shows that it is quite different from the first band (figure 6(a)) and the second
band (figure 6(b)). First the band width of the third band is about 1 to 2 orders smaller than
other two bands, and this is why the third band is called the ‘heavy-photon’ band. Second the
radius sequence of figure 6(c) is different from other two bands when the index is large enough
(n > 3). In figure 6(c), the curves from top to bottom are in the sequence that the radius is
decreasing, while in figures 6(a) and (b) the curves from top to bottom are in the sequence
that the radius is increasing. In other words, the band width of the first and second bands
decreases with increase in the radius, while the band width of the third band increases. In order
to understand these behaviours we plot the field distributions of the modes at the first, second
and third bands for kx = 0.25, n = 4 and r/a = 0.2 in figure 7, respectively.

From the field distribution of the modes calculated by the plane-wave method in figure 7,
first we can explain why the third band is very flat, which means the frequency of the band
is almost independent of the Kx (Bloch vector) variation. In figure 7 we can see that the Mie
resonance ‘direction’ of the third band is in the y direction, which is perpendicular to the wave
propagation direction (the x direction). If we write the frequency of the Bloch mode in a band
approximately as ω2 = (Q2

x + Q2
y)c

2/εμ, where Qx and Qy are the local values of ∂x E(x, y)

and ∂y E(x, y), respectively, where E(x, y) is the field inside the photonic crystal. For the
second band, Qy is zero, and Qx has two parts, one part from the Mie resonance KM and
the other from the Bloch vector Kx . So the frequency of the second band can be shown as

9
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(a) 1st band (b) 2nd band (a) 3rd band

Figure 7. The field distribution of the mode at the first three bands for kx = 0.25, r/a = 0.2 and
n = 4. The black circles denote the cylinders. (a) For the first band. (b) For the second band.
(c) For the third band.

ω2 = (KM + Kx)
2c2/εμ ≈ (K 2

M + 2KM Kx)c2/εμ when KM >> Kx . But for the third
band, since the Mie resonance is in the y direction, so that Qy = KM , and it is a large value
compared with Qx = Kx which is in the range (0, G/2). The frequency of the third band is
ω2 = (K 2

M +K 2
x )c

2/εμ, which is obviously almost independent of the second-order small value
K 2

x . From the field distribution, we can guess that the value of Qy is larger than 2G. So the
normalized band width �ωb/ωb (where �ωb is the band width, ωb is the band centre frequency)
is less than 1/16 which agrees with our numerical results. Obviously, such a property can only
appear when the dimension of the system is larger than (or equal to) 2.

The abnormal radius-dependent property of the third band can also be explained from the
Mie resonance picture too. Actually a ‘heavy-photon’ band (the third band in our case), quite
different from common photonic bands, looks much like the tight-binding case in electronic
systems. The band is dominated by the Mie resonance (in the electronic case the band is
dominated by atomic orbits) and the hopping between the resonators (the cylinders) causes the
resonance frequency to expand, then a band is generated. The hopping between the resonators
is determined by the ‘overlap integral’ of the local states at two neighbouring resonators. If
the overlap integral is small, then the band width is very small. This corresponds to the case
when the radius of cylinders is small. But when the radius of cylinders increases, the overlap
integral between the neighbouring cylinders becomes larger, so that the band width becomes
larger. Based on the Mie resonance, we have calculated the overlap integrals by the tight-
binding model, and shown the results in figure 6(d). We can see that the results agree with the
band-width trend shown in figure 6(c).

5. Conclusion

In this paper, we investigate the relation between the Mie resonance and the photonic band-
gap structures of 2D PCs. The important effects induced by Mie resonance on the band-gap
structures are observed and three conclusions from our study are derived. First, with the
radius changing but with constant index, we find that the midgap frequency and gap width
increase almost linearly with increasing radius when the radius is small, then the midgap
frequency crosses the Mie resonance frequency and the increase of the midgap frequency
becomes saturated. The radius value where the midgap frequencies crosses the corresponding
Mie resonance frequencies becomes smaller with the increase in the refractive contrast. For
very large radius, all the Mie resonance frequencies fall at the corresponding bands. Based
on the scattering picture and the hopping picture of Mie resonance, we can explain all these
correlations between the Mie resonance and the band-gap structures. Second, it is found that the
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gap-width increases rapidly when the Mie resonance frequency falls inside the corresponding
gap (with the increase of the index, the Mie resonant frequency crosses the whole gap range
from the upper edge to the lower edge). And when Mie resonant frequency is near the lower
edge of a gap, the gap width reaches its maximum value. After that the gap width decreases
very steeply with increasing index. This property clearly shows that the photonic gap width
is related with scattering strength of the Mie resonance too. The field distribution of the in-
gap states from the FDTD calculation also confirm the scattering effect of Mie resonance.
Third, we find that for the ‘heavy-photon’ band (the third band in our model) the band width
increases with increasing radius, which is quite different from other common bands (such as
the first and second bands). From the field distribution of such bands, we can see that the
hopping picture dominates the wave propagation. From the overlapping integral, which is the
parameter of the hopping ability, we can explain the change in band width of ‘heavy-photon’
bands. From these results, we can understand more clearly how the Mie resonance influences
the formation of the photonic band-gap structure. The effects of the Mie resonance on photonic
band-gap structure presented in this paper could help us to find proper materials and structures
for designing various kinds of PCs.
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Appendix. The selection of the second gap

In this paper we define the first gap as the common case which is the frequency range between
the first and second bands. But for the definition of the ‘second gap’, we need to be more
careful.

First we discuss the case of the nearly-free-photon approximation, where the band-gap
structure is from the small periodic modulation of the dielectric constant. The first three
Brillouin zones (BZ) of the square lattice and band-gap structure are presented in figures A.1(a)
and (b), respectively. In figure A.1(a), the shade represented by diagonal lines around the
central � point is the first BZ, the blank area around the first BZ is the second BZ and the
shaded area of verticals around the second BZ is the third one. It is know that the third and
fourth bands are folded from the third BZ, so the ky direction wavevector of the mode at these
bands is equal to G y [12]. And we know that the third and fourth bands are degenerate at
� due to symmetry. In this paper, since we only discuss the effects of Mie resonance on the
photonic band gap structure in the kx direction (suppose ky = 0), we have to neglect the
third and fourth bands in the weak scattering case. So that we define the ‘second gap’ as
the frequency range between the second and fifth band, as shown in figure A.1(b) with index
n = 1.2.

But when the index or the radius of cylinders increases, the third band goes down. Finally
it will be degenerate with the second band at � point (as shown in figure A.1(c)). Now, from
the tight binding model [6] we know that the Mie resonances of the cylinder in PCs play a
similar role to the atomic orbits in the electronic case. The first Mie resonance state has an
axis symmetry and is corresponding to the first band. And the second Mie resonance state with
a cos θ symmetry is two-fold degenerate and will split the second and third bands due to the
neighbour overlapping integral. The degeneration of the second and third bands at � is due to
symmetry. So, after the degeneration of the second and third bands at the � point, in order to
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(a) Brillouin zones (b) n=1.2 (c) n=5.0

Figure A.1. (a) The first three Brillouin zones. The first one is shaded with diagonal lines, the
blank is the second one and the vertically shaded area is the third one. (b) The band structure in the
�X direction with very small refractive index contrast, n = 1.2. (c) The band structure in the �X
direction with high refractive index contrast, n = 5.

discuss the effects of Mie resonance, ‘the second gap’ is defined as the frequency range between
the third band and the fourth band, as shown in figure A.1(c).
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